3.322 \(\int \frac{x^4}{a+b x^4+c x^8} \, dx\)

Optimal. Leaf size=325 \[ \frac{\sqrt [4]{-\sqrt{b^2-4 a c}-b} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}-\frac{\sqrt [4]{\sqrt{b^2-4 a c}-b} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}+\frac{\sqrt [4]{-\sqrt{b^2-4 a c}-b} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}-\frac{\sqrt [4]{\sqrt{b^2-4 a c}-b} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}} \]

[Out]

((-b - Sqrt[b^2 - 4*a*c])^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(1/4)
*Sqrt[b^2 - 4*a*c]) - ((-b + Sqrt[b^2 - 4*a*c])^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4
)])/(2*2^(1/4)*c^(1/4)*Sqrt[b^2 - 4*a*c]) + ((-b - Sqrt[b^2 - 4*a*c])^(1/4)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b -
Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(1/4)*Sqrt[b^2 - 4*a*c]) - ((-b + Sqrt[b^2 - 4*a*c])^(1/4)*ArcTanh[(2^
(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(1/4)*Sqrt[b^2 - 4*a*c])

________________________________________________________________________________________

Rubi [A]  time = 0.29584, antiderivative size = 325, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {1374, 212, 208, 205} \[ \frac{\sqrt [4]{-\sqrt{b^2-4 a c}-b} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}-\frac{\sqrt [4]{\sqrt{b^2-4 a c}-b} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}+\frac{\sqrt [4]{-\sqrt{b^2-4 a c}-b} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}-\frac{\sqrt [4]{\sqrt{b^2-4 a c}-b} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Int[x^4/(a + b*x^4 + c*x^8),x]

[Out]

((-b - Sqrt[b^2 - 4*a*c])^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(1/4)
*Sqrt[b^2 - 4*a*c]) - ((-b + Sqrt[b^2 - 4*a*c])^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4
)])/(2*2^(1/4)*c^(1/4)*Sqrt[b^2 - 4*a*c]) + ((-b - Sqrt[b^2 - 4*a*c])^(1/4)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b -
Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(1/4)*Sqrt[b^2 - 4*a*c]) - ((-b + Sqrt[b^2 - 4*a*c])^(1/4)*ArcTanh[(2^
(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(1/4)*Sqrt[b^2 - 4*a*c])

Rule 1374

Int[((d_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[(d^n*(b/q + 1))/2, Int[(d*x)^(m - n)/(b/2 + q/2 + c*x^n), x], x] - Dist[(d^n*(b/q - 1))/2, Int[(d*x)^(m
 - n)/(b/2 - q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n,
 0] && GeQ[m, n]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^4}{a+b x^4+c x^8} \, dx &=-\left (\frac{1}{2} \left (-1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx\right )+\frac{1}{2} \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx\\ &=\frac{\sqrt{-b-\sqrt{b^2-4 a c}} \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{b^2-4 a c}}+\frac{\sqrt{-b-\sqrt{b^2-4 a c}} \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{b^2-4 a c}}-\frac{\sqrt{-b+\sqrt{b^2-4 a c}} \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{b^2-4 a c}}-\frac{\sqrt{-b+\sqrt{b^2-4 a c}} \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{b^2-4 a c}}\\ &=\frac{\sqrt [4]{-b-\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}-\frac{\sqrt [4]{-b+\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}+\frac{\sqrt [4]{-b-\sqrt{b^2-4 a c}} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}-\frac{\sqrt [4]{-b+\sqrt{b^2-4 a c}} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}\\ \end{align*}

Mathematica [C]  time = 0.0216347, size = 42, normalized size = 0.13 \[ \frac{1}{4} \text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\text{$\#$1} \log (x-\text{$\#$1})}{2 \text{$\#$1}^4 c+b}\& \right ] \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/(a + b*x^4 + c*x^8),x]

[Out]

RootSum[a + b*#1^4 + c*#1^8 & , (Log[x - #1]*#1)/(b + 2*c*#1^4) & ]/4

________________________________________________________________________________________

Maple [C]  time = 0.002, size = 43, normalized size = 0.1 \begin{align*}{\frac{1}{4}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{{{\it \_R}}^{4}\ln \left ( x-{\it \_R} \right ) }{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(c*x^8+b*x^4+a),x)

[Out]

1/4*sum(_R^4/(2*_R^7*c+_R^3*b)*ln(x-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{c x^{8} + b x^{4} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

integrate(x^4/(c*x^8 + b*x^4 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 2.04456, size = 5315, normalized size = 16.35 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

-sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 6
4*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*arctan(1/2*(sqrt(1/2)*(b^4 - 8*a*b^2*c + 16*a^2*c^2 - (b^7*c
- 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))*sq
rt(x^2 + sqrt(1/2)*(b^2 - 4*a*c)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 4
8*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3
)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)) - sqrt(1/2)*
((b^4 - 8*a*b^2*c + 16*a^2*c^2)*x - (b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*x/sqrt(b^6*c^2 - 12
*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b
^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c -
 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 +
16*a^2*c^3)))/a) + sqrt(sqrt(1/2)*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 +
48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*arctan(-1/2*(sqrt(1/2)*(b^4 - 8*a*b^2*c + 1
6*a^2*c^2 + (b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^
4 - 64*a^3*c^5))*sqrt(x^2 + sqrt(1/2)*(b^2 - 4*a*c)*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2
 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*sqrt(-(b - (b^4*c - 8*a*b
^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2
*c^3)) - sqrt(1/2)*((b^4 - 8*a*b^2*c + 16*a^2*c^2)*x + (b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*
x/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sq
rt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*sqrt(sqrt(1/2)*
sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4
*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/a) + 1/4*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^
6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*log(x + (b^4*c - 8*a
*b^2*c^2 + 16*a^2*c^3)*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^
3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^
2*c^4 - 64*a^3*c^5)) - 1/4*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^
4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*log(x - (b^4*c - 8*a*b^2*c^2 + 16*a
^2*c^3)*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*
c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*
c^5)) - 1/4*sqrt(sqrt(1/2)*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*
b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*log(x + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)*sqrt(sq
rt(1/2)*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^
5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)) + 1/4*sqr
t(sqrt(1/2)*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^
3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*log(x - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)*sqrt(sqrt(1/2)*sqrt(-(
b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*
a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))

________________________________________________________________________________________

Sympy [A]  time = 3.81215, size = 126, normalized size = 0.39 \begin{align*} \operatorname{RootSum}{\left (t^{8} \left (16777216 a^{4} c^{5} - 16777216 a^{3} b^{2} c^{4} + 6291456 a^{2} b^{4} c^{3} - 1048576 a b^{6} c^{2} + 65536 b^{8} c\right ) + t^{4} \left (4096 a^{2} b c^{2} - 2048 a b^{3} c + 256 b^{5}\right ) + a, \left ( t \mapsto t \log{\left (- 32768 t^{5} a^{2} c^{3} + 16384 t^{5} a b^{2} c^{2} - 2048 t^{5} b^{4} c - 4 t b + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(c*x**8+b*x**4+a),x)

[Out]

RootSum(_t**8*(16777216*a**4*c**5 - 16777216*a**3*b**2*c**4 + 6291456*a**2*b**4*c**3 - 1048576*a*b**6*c**2 + 6
5536*b**8*c) + _t**4*(4096*a**2*b*c**2 - 2048*a*b**3*c + 256*b**5) + a, Lambda(_t, _t*log(-32768*_t**5*a**2*c*
*3 + 16384*_t**5*a*b**2*c**2 - 2048*_t**5*b**4*c - 4*_t*b + x)))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{c x^{8} + b x^{4} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

integrate(x^4/(c*x^8 + b*x^4 + a), x)